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Synopsis 

The hydrodynamic theory for the flow of nonlinear viscoe!astic fluids is developed. 
Two new dimensionless groups must be introduced into the complete second-order COT- 

rection of viscoelastic flow. These groups are called the Weissenberg and viscoelastic 
ratio numbers. It is 
argued that the Weissenberg number determines the onset of melt fracture. 

Applications to industrially important problems are discussed. 

1. Introduction 

The continuing growth and cowpetition in the plastics, fiber, and elas- 
tomer industries have made clear the necessity of a deeper understanding 
of the processing behavior of polymers and of obtaining quantitative 
methods for prediction of the rheological properties of these materials as 
they flow through dies and spinnerets, between calender rolls, and the 
screw and barrel of extruders. It is well known that polymer solutions 
and melts possess flow properties not found in common Sewtonian liquids 
such as water, alcohols and petroleum oils. The shear stress-shear rate 
behavior is observed to  be n 0 n l i n e a r , 7 ~ ~ ~ ~ ~ ~ ~  and the fluids are known to 
possess meniory of their deformation history and exhibit recoil upon sud- 
den stoppage of flow.59,66,94 If stirred in a beaker the same materials will 
flow radially inwards and appear to climb the stirring rod defying the effect 
of centrifugal forces,g4 and again, if these fluids are extruded from a tube, 
they will swell to a diameter far larger than the capillary bore.4.51.52 Per- 
haps the most spectacular of the anomalous effects observed in fluid poly- 
mer systems is the melt fraction phenomenon in which a flow incompatibil- 
ity originating in the entrance region of a die2~11~79,*g or inside of the die6f9' 
results in the emerging extrudate being rough and jagged. 

Most existing hydrodynamic analyses of the polymer-processing opera- 
t i o n ~ ~ ~ ~ ~ ~ ~  are based upon either solutions of the Kavier-Stokes equations or 
use simple one-dimensional empirical relations between shear stress and 
shear rate; they are thus incapable of explaining many of the nonlinear ef- 
fects observed. 

* Present address: United States Rubber Company, Research Center, Wayne, New 
Jersey. 
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Ideally, what is required to investigate analytically these industrial 
problems is a hydrodynamic theory of non-Newtonian flow which repre- 
sents a generalization of the Boltzniann superposition prin~iple23.8~ for 
infinitesimal strains and rotations to the nonlinear range of behavior and in 
addition accounts for t h i x ~ t r o p y ~ ~  in deforming media. A general con- 
stitutive theory accounting for nonlinear viscous and viscoelastic effects, 
but not thixotropy, has been developed since 1955 by Rivlin and his co- 
w o r k e r ~ . ~ ~ ~ ~ ~ ~ ~ ~ , ~ ~ , ~ ~  Coleman, Koll, and Markovitz13- 16,44 and Giese- 
kus,27J8,30,31 the latter author having attempted to relate the continuum 
theory to the molecular structure of deforming polymer f l u i d ~ . * ~ ~ ~ ~  Re- 
cently Whiteg7 has given a new formulation of this theory of nonlinear visco- 
elasticity. Thixotropic behavior has received almost no analytical treat- 
ment, due in part to a lack of understanding of its significance and mecha- 
nisms; existing theoretical studies being limited to those of Mooney and 
WolstenholmeGO and Hahn, Ree, and E ~ r i n g , ~ ~  whose results, though 
thought-provoking, are not conclusive. 

I n  this paper, we shall extend the basic concepts of nonlinear viscoelas- 
ticity that were developed earlier and look a t  their implications in two im- 
portant industrial problems, melt fracture in extrusion and the spinning of 
fibers. This work continues in the vein of White and Metzner,loO who 
applied a simpler theory of viscoelasticity to several industrial problems. 
A more detailed account of the methods and problems discussed in this 
paper is given in the author's thesis.g8 

2. Constitutive Theory 

It is the purpose of this section to review and extend the basic concepts 
of the theory of nonlinear viscoelasticity from the point of view introduced 
in an earlier paper.97 We postulate that the stress a t  a point in the de- 
forming medium may be specified by the entire history of the deformation 
of the immediate material neighborhood of this point.* Assuming the 
material to be isotropic in the undeformed ground state, incompressible 
and the deformation to determine the stress in a manner sbch that strains 
in the distant past have less effect than strains in the recent past, we may 
express the stress tensor as an isotropic hereditary functional of the defor- 
mation history 

The functional may be expressed in terms of an integral expansion 

.e = -PI + J: +(t - +>e d+ + J' Jl * ( t  - 41, t - 42>e e d41 d+2 
- m  

* The necessary discussion of kinemat,ics of deformation is given in the earlier 
A more extensive treatment is presented in the text by Eringen.22 
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The rheological properties of the medium may be seen to be determined 
by a series of kernel functions a, 9, etc. The first kernel function 9 may be 
related to the relaxation modulus G (  ) of linear viscoelasticity by special- 
izing eq. (2) to infinitesimal strains and integrating by parts. It may be 
shown in this manner that 

G(s) = ( l / 2 ) l m  (m)dm (3 )  

The relaxation modulus and other linear viscoelastic parameters have 
been the subject of numerous experimental studies notably by Ferry, 
Tobolsky, and their students which are summarized in the books23pe6 
by these researchers. A well known approximate empirical expression 
used for the relaxation modulus is the so-called Rlaxwellian distribution 

G(s) = ce-"" (4) 

In  this case a( 
kernel may be uniquely determined. 

Knowledge of higher kernels is not similarly obtainable from linear visco- 
elastic functions though hopefully the methods of statistical mechanics 
and thermodynaniics22*98 may lead to useful relationships. 

In  treating the continuous deformation of a medium, the strain may be 
expressed (or if not, then approximated) by a Taylor series about the in- 
stantaneous strain. As we are using the instantaneous state as the refer- 
ence state 

) will likewise be exponential. 
We see that from G( ), the 

e(0) = 0 

and 

e(s)  = ~[( - l )"+ ' s" /2n! l  B, (5) 
where B, are kinematic tensors representing physically the rate and ac- 
celerations of the distortions of an area element embedded in the deforming 
medium. These tensors are thus related to the Rivlin-Ericksen tensors71 
which measure the rates and accelerations of deformation of an embedded 
differential line segment. For incompressible media, the B1 matrix niay be 
shown to be the deformation rate tensor97 

Bi = (VV) + (VV)T ( 6 4  

and the higher tensors are 

Equations (6) are equivalent to a series of kinematic tensors used by 
G i e ~ e k u s ~ ~ J ~ ~ ~ ~  and WZte and Metzner. loo 

Substituting this expression for e(s) in the integral expansion will allow 
us to write the stress tensor in terms of the B, matrices. If we expand these 
matrices in terms of order n in velocity, we have 



2342 J. L. WHITE 

c = -PI + EM, 

M3 = w(tr BI2)B1 + ugB3 + w6 (BIB2 + B2B1) 

M.I = (w7 t r  B13 + W8 t r  BlB2)BI + w9(tr BI2)Bl2 

+ wlo(tr B12)B2 + W I I B ~ ~  + w& + w13(B12B2 + BJ31') (8d) 

+ wld(BlB3 + B3B1) 

Equations (7)-(8) may be interpreted in two senses. First they may be 
considered as a perturbation about a state of rest and second as a perturba- 
tion about Newtonian flow. 

The second-order approxiniation is somewhat significant as it contains 
the first viscoelastic effects beyond Newtonjan flows. While i t  does not 
show non-Xewtonian viscosity, normal stress effects in laminar shear 
flows are predicted. This second-order fluid is somewhat analogous to 
Mooney's theory of s~perelasticity,5~ which Rivlin and his co-workers point 
out is the complete second-order correction to classical linear elastic- 

Froin a careful coniparison of the wd coefficients with the integral expan- 
ity.69,72,92. 

sion in eq. ( 2 ) ,  we obtain the relations of eqs. (9) and (10). 

(L'3 = (-1) (;) SOrn S2 @(s)ds 
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From these results we see that knowledge of two kernels and 9 allows us 
to  calculate all of the coefficients in MI and M2, two of three in M3, and three 
of eight in M4. Four of these coefficients may be obtained in terms of the 
relaxation modulus G( ) and are given in eqs. (11). 

w1 = l m G ( s ) d s  

P m  

w3 = J sG(s)ds 
0 

w12 = -(1/6) J s3G(s)ds 
0 

Now the relaxation modulus is of course positive, and it follows that the 
coefficients w1 and w5 must be positive and w3 and w12 are negative. 

Coleman, Koll, and M a r k ~ v i t z ’ ~ ~ ~ ~  have investigated the relationship of 
their theory of hereditary niedia to linear viscoelasticity and arrived a t  
relationships similar to, but inore limited than eqs. (9)-(11) for the coef- 
ficients of the Rivlin-Ericksen tensors. In  fact, the coefficients of the first 
two Rivlin-Ericksen tensors are identical to w1 and w3. They further point 
out that the coefficients of these first two tensors are related by an equa- 
tion derived by Fujita (and given in the book by Ferry23) for the steady- 
state shear compliance of linear viscoelasticity 

From eqs. (11) it follows that 
w3 = -J, mi2 

An additional series of interesting relationships may be derived by 
assuming the relaxation function to have an exponential form as in eq. (4). 
Substitution into eqs. (11) yields 

w3 = -wl”c (144 

(id = -wlW3/C (14b) 

w12 = -wIwb/c (14c) 

Experimental data taken in simple kinematic niotions may also be used 
to determine or put restrictions on coefficients. The experiments of 
Philippoff et al.,p,62,66 Markovitz and his c o - ~ o r k e r s ~ ~ ~ ~ ~  Kotaka, Kurata and 
T a m ~ r a , ~ ~  and Ginn and I l l e t ~ n e r ~ ~  on laminar shearing motions indicate 
the following inequalities 

w1 > 0 (1 5a) 

(l5b) w’? - 2k.3 > 0 
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3. Hydrodynamic Theory of Viscoelastic Flow 

In  this section, we consider the dynamics of viscoelastic fluids in a gen- 
eral form looking mainly a t  the properties of the equations of motion. First 
we note that there exist two general classes of hydrodynamic flows for which 
exact solutions are possible, these being known as laminar shearing flow and 
steady extension. The basis of the exact solutions is the fact that the 
strain tensor e may sometimes be expressed in ternis of a finite number of 
independent acceieration tensors. These solutions are given for the 
general nonlinear viscoelastic fluid by Rivlin,’O Giesekus,28 Ericksen,20 and 
Coleman and No1112013815*17 and for more restrictive constitutive theories by 
Rlooney,58* Oldroyd,61 W a l t e r ~ , ~ ~  and White and AIctzner.lOO This work is 
discussed in terms of our formulation in an earlier paper.97 Unfortunately, 
the methods used for exact solutions are not applicable to most problems. 

Approximate procedures for solving viscoelastic flow problems date to 
the work of Langlois and R i ~ l i n , ~ ~ - ~ ~  who use perturbation procedures to 
analyze internal flows in which inertia may be neglected. This method 
has been applied to external flow about a submerged object by Leslie and 
Tanner,40 Caswell and Schwarz,lo and G i e ~ e k u s . ~ ~  More recently, Narko- 
vitz and have called attention to the importance of second-order 
fluids and investigated several problems, including unsteady flows. 45 

If we substitute the constitutive matrix expansion, eq. (7), in Cauchy’s 
law of motion, we obtain 

For the first-order fluid, this becomes 

and using the incompressibility restriction, we obtain 

D 
Dt p - V = -  vp t W l V 2 V  + pf 

which are the Navier-Stokes equations.e@ It is solutions to this vector 
equation which were proposed a t  the 1952 American Chemical Society Ex- 
trusion Symposium as the basis of design procedures for screw extruders. 

* Mooneyss and Philippoff, and Gaskin~=.6~,65 make use of an alternate approach to 
the dynamics of viscoelastic flow, which was suggested by Weissenberg.g4,9s According 
to Weissenberg’s theory, the stress tensor is related to a recoverable strain tensor rather 
than to the deformation history. 
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Solutions of the Navier-Stokes equations do not predict non-Newtonian 
viscosity or normal stresses in laminar shearing flow and the only sig- 
nificant dimensionless group arising in the equations is the Reynolds num- 
ber.8s68 

For a second-order fluid, we obtain 

(18) 
D 
Dt 

p - V =  - V p  + wIV2V + U Z V . B I ~  + f.d3v7.B2 + pf 

The considerable complexity of even this, the first approximation be- 
However an interesting simplification 

Introducing the 
yond Newtonian flow, is evident. 
of eq. (18) may be made for the case of plane flows. 
Stokes stream function $ ( X , Y ) ~ > ~ ~  

u = dG/dy 
u = -dll./dx 
w = o  

into eq. (18) and eliminating the pressure p between the x and y coin- 
ponents, one obtains (assuming curl f to be zero) 

or equivalently 

D 

+ 2 (””)(% d X d U  

It is seen that the contribution of BIZ has disappeared from the equa- 
tions of motion and we must only consider effects due to the second ac- 
celeration tensor. For nonplanar two-dimensional flows the contribution 
of BIZ remains present. 

We now discuss the application of the principle of dynamic similarity8 
to the equations of motion for a second-order viscoelastic fluid. This prin- 
ciple, which was first used by Osborne Reynold@ to determine a criterion for 
turbulence in Xewtonian fluids, consists in placing the equations of motion 
in dimensionless form by introducing a length L and velocity U characteris- 
tic of the system and noting how the resulting dimensionless groups specify 
the properties of the solutions of these equations. The solution of the di- 
mensionless equation of motion for a reduced velocity profile V / L 7  will be 
identical, for specified boundary conditions, whenever all the dimensionless 
groups have the same value no matter what the overall dimensions of the 
system be. Further, the stability of the system and the introduction of 
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different flow regimes will be determined by these groups and they toget,her 
with the geometry of the system will specify frictional drag. Denoting 
dimensionless terms in the equations of motion by asterisks, the steady- 
state form of eq. ( 1 8 )  may be written 

There are seen to  be three significant dimensionless groups, one of which we 
are already familiar with-the Reynolds number L U p / w l ,  the ratio of inertial 
to viscous forces. The group w3V/wlL  signifies the ratio of viscoelastic 
forces (as represented by the second accelerationtensor) to the viscous forces 
and finally wz/w3 denotes the ratio of the forces due to the B12 matrix to 
those of the second acceleration tensor. For planar flows, the last dimen- 
sionless group will have no significance. The group w3U,’w1L will be named 
for I<. Weissenberg and the group w2/w3, the viscoelastic ratio number. 
(The reasons for these designations will become clear with further discus- 
sion.) We introduce the notation 

[ L U P / ~ I I  = N m  (Reynolds number) (23a) 

[ (- 1 ) w ~ U / w 1 L ]  = [JewlU/L J = N,, (Weissenberg number) (23b) 

[wz/w3] = N V R  (Viscoelastic ratio number) (23c) 

The friction factor for the drag due to a secnnd order viscoelastic fluid 
may be expressed 

f = ~ ( N R ~ ,  Nwe, NVR, geometry) (24) 

Equation (24) is entirely suitable for use to develop dimensionless cor- 
relations for the slow flow of viscoelastic fluids.* 

We now turn to a detailed discussion of the physical significance of the 
terms Nwe and NvR. If one considers the steady laminar shearing flow 
of a viscoelastic fluid, the ratio of normal stresses in the direction of shear- 
ing to the direction of flow may be expressed for slow n i o t i o n ~ ~ ~ . ~ ~  as 

(7?2 - 733)/(7l l  - 7 3 3 )  = WZ/(Wz - 2w3) 

= N V R / ( N V R  - 2) (25)  
* Dimensionless friction factor correlations are not new to non-Newtonian fluid dy- 

namics. Work up to 1956 in this area is comprehensively reviewed by Metzner49 and a 
version updated to 1959 has recently been pub1ished.m Dodge and Metaner19 developed 
a friction factor-Reynolds number plot for purely viscous non-Newtonian fluids in tur- 
bulent flow in pipes, while Slattery and Birds0 have published a correlation for drag on 
spheres by purely viscous non-Newtonian fluids. The only existing work of this type 
which considers the viscoelastic properties of non-Newtonian fluids is the unpublished 
study of Sailor, Park, and Metzner on turbulent flow in tubes.75 
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In  1948, Weissenbergg5 conjectured the equality of normal stresses in the 
directions perpendicular to flow, i.e., 

7 2 2  = 733 (26) 

and experimental results of Roberts,74 Botaka et a1.,35 and Philipp0ff6~ have 
supported him. n’ow M a r k o v i t ~ , ~ ~ ~ ~ ~  on the basis of several different 
experiments, has argued that Weissenberg’s conjecture is in error. Sum- 
marizing existing data, Ericksen2’ concludes the normal stress ratio of ey. 
(25) to be about one-tenth, and Ginn end J l e t ~ n e r ~ ~  on the basis of exten- 
sive new data find it to vary from zero to -0.25. The viscoelastic ratio 
number then appears to exist in the range -0.2 < N V R  < +0.4. The 
Ericksen value of N v R  would be 0.2. 

In  his analysis of viscoelastic flow, Weissenberg emphasized the signif- 
icance of the wcoverable shearing strain. At the First International Rheo- 
logical Congress held in 1948, Weissenberg argued as follows :95 

‘‘ As a dimensionless quantity of tensorial character, we may quote here the recover- 
able strain. Just as the Reynolds Number coordinates the rheological states with re- 
spect to simultude in the relative proportions of the forces of inertia and of internal 
friction, so the recoverable strain does a i t h  respect to sirnulitude in anisotropy in t!\e 
sheared states . .” 

I n  a slow laminar shearing flow, the recoverable elastic strain, s, is classi- 
cally 

The Weissenberg number is seen to represent physically the amount of 
recoverable strain in the fluid. It should also be noted that 

s = ~ , ~ , r [ ~ ~ r / ~ ~ r ]  
= --w3r2/wlr (29) 

= (711 - r22)/2712 

Philippoff and his co-workers66 have experimentally determined the 
recoverable shearing strain in a coaxial cylinder instrunlent and used the 
results to compute normal stresses. This method would appear to have 
semiquantitative value. 

Turning to the third-order fluid, we obtain the equation of motion 

D 
DL p - V = - V p  + (w1 + w4tr B12) Bl + w2V.BI2 + w3V.B2 

+ w5V7B3 + ~ 6 5 7 .  [B& -I- BzBi] + pf (30) 

It is obvious that the complexity here is becoming so great that simplifying 
approximations may have to be introduced. Some such approximations 
have been studiedg8 and will be published in the near future. 
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Before concluding this section, we shall briefly discuss the boundary 
conditions to be used on the equations of motion for viscoelastic fluids. 
The jump condition on Cauchy’s first law of motion for stationary sur- 
faces is equality of the stress vectors on both sides of the diaphragm.22 
Thus, for example, if the fluid has a free surface on which there is only 
negligible drag of the air, then it will mean that the stresses in the fluid will 
be small and the velocity gradients essentially zero. A more important 
boundary condition is that at a solid boundary. This boundary condition 
for Newtonian fluids was the subject of an extensive historical controversy 
involving notably Navier, Poisson, and Stokes, who differed as to whether 
the fluid adjacent to a solid surface adhered to that surface or slipped along 
it. The answer eventually accepted was that given by Stokes83 in 1848 (in 
which he reversed an earlier position82) that there was no slippage at solid 
boundaries. The controversy rose again in the study of non-Newtonian 
polymer solutions and slurries in the 1920’s. Mooney derived an expres- 
sion for calculating wall slip velocity in a capillary tube and has presented 
data showing its existence in suspensions and uncured  elastomer^.^^ Decker 
and Rothl8 have argued that raw elastomers exhibit slippage in a Mooney 
shearing disk viscon~eter.~~ Maxwell and Galt46 claim to show slippage in 
molten polyethylene flowing through a capillary, but objections to their 
experiments may be raised. Toms87 uses arguments of the Mooney type56 
to show slippage in capillary flow of a monochlorobenzene solution of 
poly (methyl methacrylate). However numerous sets of experimental 
data exist which show that slippage does not exist with polymer melts and 
solutions and the majority of researchers are in agreement with this. When 
slippage does occur we would expect, as has been pointed out by 
RI0oney,5~J~ that the solid boundary slip velocity is a unique function of 
the point shearing stress. 

4. The Weissenberg Number and the Bagley-Tordella Melt Fracture 
Criterion 

Melt fracture or elastic turbulence first received detailed attention in 
the 1940’~~  notably by Spencer and Dillon,B1 who, perceiving rough and 
jagged polymer extrudates emerging from dies, attributed to an exit effect 
caused by the interaction of “elastic” bulging and solidification due to 
cooling. Later T ~ r d e l l a ~ ~  pointed out a die entrance effect occurring to- 
gether with the extrudate roughness and argued that it was the cause of the 
exit phenomenon. Tordella’s hypothesis was born out by later researches 
of Clegg,Il Metzner, Carley, and Parks1 and Bagley and his c o - ~ o r k e r s . ~ ~ ~ ~ ~ ~  
The fracture phenomenon is known not to be unique to molten plastics 
and to occur in raw e l a~ tomers*~ ,~~  and  silicone^.^* Recently Benbow6 and 
Tordellagl have called attention to a “stick-slip” mechanism which may 
cause the onset of fracture inside of the die for certain materials. It 
must be emphasized that the kinematics of melt fracture are still uncertain. 

* Metzner and Whitlock6* have found an anomolous flow effect similar to fracture 
occurring in concentrated suspensions. 
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The point we wish to consider here is the theoretical basis for the deter- 
mination of the criterion for the onset of melt fracture. The method 
which we use is that proposed many years ago by Osborne Reynolds68 
to determine a criterion for the onset of turbulence in laminar flow of 
Kewtonian fluids in tubes. By studying the dimensionless groups arising 
from the equations of motion for a second-order fluid, their physical sig- 
nificance and magnitude, then noting that melt fracture takes place in 
planar as well as nonplanar flows; it would seem that the phenomena should 
occur a t  a critical value of the Weissenberg number. For a die having a 
typical characteristic length as a cross-sectional dimension D (e.g., capil- 
lary diameter or slit thickness) the criterion is w1 JeU/D, with allowance for 
some effect of NVR and geometry, as well as the Reynolds number. Tor- 
della89r90 has, however, pointed out the smallness of the Reynolds number 
at the onset of melt fracture. We emphasize that we are considering this 
phenomenon to be generally caused by a hydrodynamic incompatibility 
due to, or greatly enhanced by viscoelastic forces and are in no way as- 
suming the onset to occur in the mouth or within the die. 

Turning to the literature on melt fracture we find two significant early 
studies of the onset criterion by Spencer and Dillon8l and T ~ r d e l l a . ~ ~  
This latter author conjectured that the phenomenon was initiated a t  a 
critical value of the recoverable elastic strain. More recently, Bagley,' 
determining the recoverable strain from the Philippoff -Gaskins end effect 
e ~ p e r i m e n t , ~ ~  finds sR to be 6.0-7.5 at the onset of elastic turbulence in 
linear polyethylene. Bagley cites data on other polymer melts which 
agree with this. Tordellag1 has reinforced this conclusion by using in- 
sbantaneous modulus experiments and obtaining results agreeing with 
Bagley. We immediately note from eq. (28) that the Bagley-Tordella 
melt fracture criterion is identical to our prediction of a critical Weissen- 
berg number. 

Having shown that existing experimental data is in agreement with our 
theory, we may move one step further by writing 

(Nwe)crit = (JJ8)wi 8U/D = Je(712)B/8 (31) 

and using an expression given by Ferryz3 for the steady-state shear compli- 
ance of linear polymers 

J, = (2/5) M / R T  (32) 

we obtain the expression 

J~(TI*)B = 20 PRT (N1Ye)crit (33) 

The constancy of the product of molecular weight and wall shear stress 
a t  the onset of melt fracture was first pointed out by Spencer and Dillonsl 
for polystyrene melts, and, more recently, Bagleyl has shown it to be true 
for linear polyethylene and quotes experiments by Howells which indicate 
this relationship to hold for poly(methy1 methacrylate). (Bagley justifies 
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this result by conjecturing that the shear stress is related to the recoverable 
strain by the modulus of the kinetic theory of rubber e l a~ t i c i ty .~~)  

We should note that melt fracture is only known to occur in the region 
of non-Newtonian viscosity. However, the second-order fluid approxima- 
tion is not unreasonable here. 

A difficulty arises in our theory when we consider polymer solutions as 
values of the Weissenberg number are reached in capillary flow far in excess 
of those in which fracture is found in r n e l t ~ . ~ ~ , ~ ~ J s  However polymer solu- 
tions have, in general, far lower viscosities and steady-state shear compli- 
ances than melts, and the critical Weissenberg number is not reached until 
the second-order fluid is no longer even approxiniately valid. One is also 
in a region of significantly large Reynolds numbers. 

5. Rheology of Fiber Spinning 

In  this section, we shall discuss in some detail the significance of 
nonlinear viscoelasticity in the spinning of fibers from high polymers. 
Little has appeared in the literature about the technical details of this im- 
portant process, the most substantial publications being articles by Preston 
on wet spinning16’ Lodge on melt spinning141 and Frey and Sippel on dry 
spinning.24 Here we shall mainly be concerned with the last two proce- 
dures. The rheology of fiber spinning has received even less attention, and 
we can refer only to the review by Robertd3 and papers by Ziabicki and 
Kedzierska. lol- lo3 

Briefly, in melt spinning of fibers, the polymer is melted and extruded 
vertically through the many holes in the face of a plate known as a spin- 
neret. The spinneret disk is about 0.25 in. thick and the holes about 0.010 
in. in diameter. A cross blast of gas is usually used to cool and solidify the 
vertically descending fiber filaments, most yarns being solid about 2 ft. 
below the spinneret. The individual filaments are brought together and 
pass over feed rolls on to a surface bobbin, such actions creating an addi- 
tional tensile stress in the descending fibers. 

When degradation is significant in the molten state, fibers are usually 
dry-spun. The polymer is dissolved in a suitable solvent and extruded at 
reasonably high temperature through a spinneret. A gas is blown co- or 
countercurrently to the descending fiber filaments to absorb the evaporating 
solvent. 

The first point to be discussed is the criterion of good solvents for a 
polymer in dry spinning. The method currently most used in the fiber in- 
dustry is “spinnbarkeit” (the ability to form liquid threads spontaneously). 
Some time ago the author was preparing polymer solutions in part to test for 
“spinnbarkeit” and noted the coincidence of this property with the fluids’ 
strong tendency to climb the stirring rod in the beaker where it was being 
niixed (Weissenberg effect). Similar observations have been recorded by 
Tonmas Fiber spinnability and spinnbarkeit would appear to  require 
either that the stretching (i.e., Trouton) viscosity increases with defor- 
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niation rate and/or filament stability is greatly enhanced over Xewtonian 
fluids. 

First consider the motion of a viscoelastic polymer solution being stirred 
in a beaker, which we may approximate by laminar shearing flow between 
concentric coaxial cylinders, the outer cylinder being stationary and the 
inner rotating with angular velocity 0. This problem has been treated ex- 
actly for general viscoelastic fluids by Giesekus28 and Coleman and N011’~ 
and we may use their results to analyze surface elevation in stirring polymer 
solutions. If we specialize to second-order fluids, the integrals obtained by 
these authors may be integrated. Denoting the radius of the outer cyl- 
inder by R and the inner cylinder by KR and solving for the axially upward 
stress a t  radius T ,  we obtain 

P, = -rz2 

The upward stress is seen to be divided into two parts, a contribution due 
to viscoelasticity which would cause surface elevation and a contribution of 
centrifugal force tending to throw the fluid radially outwards. Equation 
(34) not only shows how the Weissenberg “stirring rod” effect is caused by 
viscoelasticity, but it enables us to see that the viscoelastic ratio number is 
always less than one half. 

Turning now to an oversimplified picture of thread formation from a 
polymer solution, that of steady extension of a fluid filament having a 
circular cross section, we will derive an expression for the Trouton viscos- 
ity. The flow field is 

V = az e, - (az /2)  e, - (az /2)  e, (35) 

The stress tensor is given by eq. (35)  in our earlier paper.g7 Making use 
of the boundary condition tha.t the normal stress in the radial direction 
in the filament must equal atmospheric pressure on the fluid surface, we 
may express the axial tension as 

rz2 = (3/2)wi { 1 + J,wia [1 - (w/w)I ) a  (36) 

and the Trouton viscosity is 

VT = (3/2)wl [ I  f J,wa (1  - N v R ) ]  (37) 

Now the shear viscosity of a second-order fluid is independent of shear rate 
and is a decreasing function of shear rate in third and higher order fluids. 
The opposite effect is found above for the Trouton viscosity; it increases 
with stretching rate, and the increase is due to the viscoelastic properties 
through the steady state shear compliance (or Weissenberg number). 
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Spinnbarkeit, like the Weissenberg effect, is seemingly due to the viscoelas- 
tic properties of the spinning solution. 

No satisfactory theoretical analysis or experimental study would appear 
to  exist for the effect of viscoelasticity upon the stability of cylindrical 
fluid filaments. Other studies of the relationship of viscoelasticity to flow 
stability and turbulence have appeared in recent years. The petroleum 
industry is making use of the Dodge-Metzner e f f e ~ t ' ~ ~ ~  in which the fric- 
tional drag in pipeline flow is significantly reduced at high Reynolds num- 
bers, indicating perhaps that viscoelasticity enhances stability in Poiseuille 
flow. More extensive experiments of the effect of viscoelasticity upon drag 
reduction have been made by Sailor, Park, and Metzner.'5 On the other 
hand, Thomas and WaltersS5 have shown theoretically that viscoelasticity 
decreases the hydrodynamic stability of flow in curved pipes. The latter 
flow instability however is due to centrifugal forces (as in the Taylor co- 
axial cylinder problem) and is to some extent in a different category from 
the cylindrical filament and Poiseuille flow problems. 

We may conjecture that in spinning fibers one must choose systems of 
intermediate viscoelastic properties. Spinning solutions with negligible 
viscoelasticity cannot be spun, while highly viscoelastic polymer melts will 
fracture at moderate output rates.lo3 

Finally, we shall discuss the behavior of polymer solutions and melts 
flowing through the holes of a spinneret and the resulting properties of the 
emerging filament. Consider a viscoelastic fluid in fully developed 
laminar shear flow moving axially through a cylindrical duct. Though rig- 
orous analyses of the shear stress-shear rate-slippage relationships and 
pressure gradient-flow rate behavior of non-Newtonian fluids in tubes date 
to Mooney's 1931 paper,56 the significance of viscoelastic properties in this 
geometry were not fully realized until the work of PhiIippoff and Gas- 
 kin^^^.^^,^^ in the last decade. Rigorous studies including viscoelastic ef- 
fects are given by Coleman and 1\T0ll'~ and by Aietzner and his co-work- 
ers.52,78,99 Calculating the axial normal stress in the manner used in the 
papers by Metzner et al. for a second-order fluid yields 

where z is the axial direction, D the duct diameter, R the radius, and V the 
average velocity. Derivation of the velocity profile for a second order 
fluid shows i t  to be parabolic and the pressure gradient to be linear with 
the flow rate obeying Poiseuille's law. However the total pressure built 
up in the spinneret is not only used in overcoming friction, but in the 
elastic and kinetic energy fluxes of the fluid. In  polymer melts the elastic 
energy flux will dominate the kinetic energy. Calculation of the fiber 
efflux rate from the pressure built up in the spinneret will lead to abnormally 
large values unless elastic energy be considered. This is the same phe- 
nomena as that upon which the Philippoff-Gaskins end effect exper in~ent~~ 
is based. While discussing the flow of a viscoelastic fluid through a cylin- 
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drical duct, it should be noted that some controversy exists as to the die 
length necessary to obtain fully developed flow.77,96 

hletzner and his ~ o - w o r k e r s ~ - ~ ~ , ~ 8  have shown that the diameter of a 
horizontal fluid jet leaving a cylindrical tube (or parallel plate channelg9) 
niay be related to the nionientum flux of the fluid and the axial normal 
stress. Middleman and GavisZ6sa have shown that at low Reynolds num- 
bers, horizontal jets of Newtonian fluids expand to a diameter far greater 
than that predicted from a momentum flux balance and point out that 
undoubtedly a siniilar effect exists in viscoelastic fluids. The experinients 
of Middleman and Gavis have been verified in hfetzner’s labor at or^.^^ 
Use of the theoretical development we shall give will be limited to flux rates 
higher than the Middlenian-Gavis range. A second limitation also exists 
to the technique of Metzner et a]., this being that extrudate expansion is a 
strong function of length/diameter ratio of tubes4JZ and what we are con- 
sidering is a large LID asymptote. It is this effect of extrudate diameter 
on L/D which has lead to the question of a t  what point the flow is fully de- 
veloped. 96 

Considering a fiber filanient emerging downward from the spinneret, we 
make macroscopic niomentuni and mass flux balances between the exit of it 
spinneret hole and the filament 

1 2srpu2dr - l 2 s r ~ ~ ~ d r  = 1 R R df’2 
2nrpvf2dr 

- 2S1’TfdT - ldfldr’2 27rrqgd,dz (39) 

d J  

3rD2V/.4 = 27rrufdr (40) 

where uf is the filament velocity and T ,  the stretching tension in the descend- 
ing fiber. The integrals on the left-hand side of eq. (40) niay inimedi- 
ately be integrated from consideration of the parabolic velocity profile 
and eq. (38). If we introduce the simplifying conjecture that the velocity 
profile in the descending filament is uniform, we niay eliminate the fila- 
ment velocity between eqs. (39) and (40) and obtain an expression for the 
filament diameter d, 

ld ’1’ pg (r/R) d(r/R)dx (4 1 ) 

PVZ 
+ 

If we were considering a horizontal viscoelastic jet rather than a vertically 
descending fiber filament, the last two ternis in the above equation would 
not appear, the jet would expand to a diameter greater than that for a 
Newtonian fluid, and the diameter would remain constant. In the vertical 
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filament, we must consider in addition the final two terms representing, 
respectively, axial stretching and gravitation. The net efiect on the 
descending filament is that the second term on the right-hand side of eq. 
(41) causes an immediate expansion upon emergence from the spinneret 
and as the fiber continues to descend the gravitational forces and axial 
filament tension causes an increasing contraction. 

In  the above analysis we have neglected the effect of the aerodynamic 
drag by surrounding gases upon the moving fiber. This problem has re- 
cently received serious study by Sakiadis.16 

6. Conclusions 

In  this paper, we have made a serious study of the constitutive and 
hydrodynamic theory of viscoelastic fluids, in particular for slow flows. 
We have also shown the significance of our theoretical results to the im- 
portant industrial problems of melt fracture in extrusion and to melt and 
dry spinning of fibers. 

This work was carried out during the author’s graduate studies a t  the University of 
Delaware. He v-ishes to thank Prof. A. B. Metzner and several of his students. notably 
R. F. Ginn, R. A. Sailor, and R. C. Shertzer, for many helpful discussions in the general 
area of this paper. Dr. Bernard D. Coleman made ref. 44 available. 
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Resume 

On a d6velopp6 une th6orie hydrodynamique pour 1’6coulement de fluides visco- 
Blastiques non-lin6aires. I1 faut introduire deux nouveaux groupes sans dimensions dans 
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la correction du second ordre de l’dcoulement visco6lastique. Ces groupes s’appellent 
les rapports numeriques de Weissenberg et de visco6lasticit6. On en a discute les appli- 
cations importantes du pont de vue industriel. On suggbre que le rapport de Weissenberg 
determine le debut de fracture lors de la fusion. 

Zusammenfassung 
Die hydrodynamische Theorie fur das Fliessen von nichtlinear viscoelastischen Flussig- 

keiten wird entwickelt. Zwei neue dimensionslose Gruppen mussen in die vollstandige 
zweite Naherung der Theorie des viscoelastischen Fliessens eingefuhrt werden. Diese 
Aggregate werden die Weissenberg’sche und die viscoelastische Verhaltniszahl genannt. 
Die Anwendung auf industriell wichtige Probleme wird diskutiert. Es wird angenom- 
men, dass die Weissenbergzahl den Eintritt des Schmelzbruches bestimmt. 
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